SM Manufacturers Showroom ► TOTO ► EcoPower® Toilet Flush Valve

< Click navigation to go to live Transparency Report.

# TOTO<sub>®</sub>

### **EcoPower® Toilet Flush Valve**

TET1LN - Exposed Valve 1.28gpf **TET2LN** - Concealed Valve 1.28gpf



#### Performance Dashboard





## Features & functionality

1.28gpf EcoPower® High-Efficiency Toilet (HET) electronic flushometer valve

Hydropower self-generating system

Automatic sensor activated

24 hour automatic flush for trap seal protection

Piston valve technology

Manual override button

ADA compliant

#### Visit TOTO for more product specifications for:

TET1LN TET2LN

CSI MasterFormat® #22 42 43

#### **Environmental performance**

#### Improved by:

Powered by the sheer force of running water Saves 20% more water than standard 1.6gpf valve Metal parts and electric components are recyclable at the end of service

#### Certifications & rating systems:

CALGreen® compliant

Contributes to earning credits in LEED®

See LCA results & interpretation



#### ECO-POWER® VALVES

- Powered by water to create an electrical current that is stored in rechargeable cells to power the Smart Sensor System of the faucet or valve.
- · Reduces electricity use, lower maintenance costs and hands-free, automatic-shut-off functionality.





# M Transparency Report™

**VERIFICATION** Report **NSE** Certified Self-declared **LCA** 3rd party verified **NSF.** Self-declared

Validity: 10/30/15 - 10/30/18 TOT - 10/30/15 - 012

#### **LCA SCOPE**

Cradle to grave Cradle to gate with options Cradle to gate

The LCA and Report are independently verified and certified to the SM Transparency Report Framework and ISO 14025.

#### **NSF** International

P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org

+1 734 769 8010



#### **TOTO USA**

1155 Southern Road Morrow, GA 30260

Contact us

# LCA results & interpretation

Sustainable Minds®

Transparency Report

## Download PDF

**TET1LN & TET2LN** 

## Scope

#### **Functional unit**

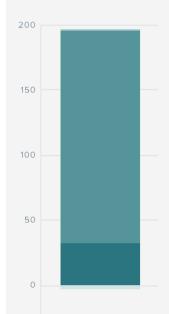
One average flush valve for toilets in an average U.S. commercial environment for 10 years.

One flush valve for toilets in an average U.S. commercial environment. The period of 10 years is modeled as the period of application based on the average technical lifespan for commercial applications. The economical lifespan of commercial applications can be longer or lower due to aesthetic replacements or more intense use. The implication is that the LCA model assumes that the application ends at year 10 and that the materials will be treated in an end-of-life scenario.

### Reference service life

The RSL is 10 years.

### Default use phase scenario


10 years of service in an average U.S. commercial environment in combination with a toilet with 1.28 gallon/use, 133 uses/day, and 365 days/year resulting in 621,376 gallons of water.

### Material composition greater than 1% by weight PART MATERIAL

| PARI                | MATERIAL         | AVG. % W I. |
|---------------------|------------------|-------------|
| Valve body          | Bronze (C836000) | 25.5%       |
| Packaging           | Cardboard        | 15.2%       |
| <b>Bottom cover</b> | Zinc die cast    | 14.9%       |
| Top cover           | Zinc die cast    | 13.2%       |
| Valve cap           | Bronze (C836000) | 8.0%        |
| Valve tailpiece     | Bronze (C836000) | 3.5%        |
| Manuals             | Paper            | 3.1%        |
| Cover plate         | Stainless steel  | 2.0%        |
| Tailpiece nut       | Brass            | 1.3%        |
| Solenoid coil       | Copper           | 1.1%        |
|                     | Other            | 12.2%       |
|                     |                  |             |

## Total impacts by life cycle stages [mPts/func unit]

LIFECYCLE STAGE



| Production   | 32.25                                                  |
|--------------|--------------------------------------------------------|
| Construction | 0.06                                                   |
| Use          | 163.93                                                 |
| End of life  | 0.06                                                   |
| Recovery     | -2.89                                                  |
|              | Total impacts = 193.40 mPts<br>per 10 years of service |
|              |                                                        |

**AVG. MPTS/FUNC UNIT** 

### What's causing the greatest impacts

### All lifecycle stages

The use and production stages are both important and dominate the results for all impact categories.

The impact of the use stage is mostly due to the embedded energy arising from acquisition, treatment and distribution of the water used during the use of the product (i.e. a toilet or a urinal) to which the valves are installed. The production stage itself has a significant contribution to eutrophication (mostly from emissions from copper mining), non-carcinogens (emissions from the production of coal, copper and zinc) and ecotoxicity (mostly from the disposal of steel slags and bottom ashes, as well as from barium emissions to water due to the extraction processes of natural gas).

The recovery stage includes recycling processes and benefits by preventing the need to produce primary materials. Recycling is a relevant factor for some of the impact categories, offsetting a portion of the impacts caused by production. Additionally, the delivery of the product to the construction/installation site, the construction/installation processes, the processes for dismantling the product and final waste treatment during the end of life stage do not have a significant impact.

# **Production stage**

AVG % WT

Bronze and zinc parts, together with the printed wiring board, have significant contributions to the impact categories. The stainless steel material is relevant to the carcinogenics category. The electroplating process is a major contributor to the ozone depletion category while the die casting process is relevant to the ecotoxicity and non-carcinogenics categories. Additionally, polishing and potting have somewhat significant processing contribution to the results. Transport via oceanic freighter appears as a relevant contributor to the fossil fuel depletion and smog categories. The remaining parts and processes contribute between 3% and 15% to the overall impacts in the rest of the categories.

#### Sensitivity analysis The TET1LN and TET2LN versions are equal in the use phase; therefore,

variations in the life cycle are driven by materials and processes that are used in one version of the product but not in the other. Examples are electroplating and zinc die casting, which are only used in the TET1LN version. The TET2LN version does not use zinc, and therefore no zinc die casting and electroplating of the zinc alloy are required. Multi-product weighted average

#### Results represent the weighted average using production volumes for the

products covered. Variations of specific products for dierences of 10-20% against the average are indicated in purple; dierences greater than 20% are indicated in red. A dierence greater than 10% is considered significant.

## TOTO PeoplePlanetWater... programs improving environmental performance

- TOTO's EcoPower® products are powered by the force of running water. • The electronic and mechanical components are programmed and
- designed to allow water flow and accurate flush volume only when needed. • Water consumption is reduced in the use phase due to superior
- flushing performance.

#### **LCA results**

| LIFECYCLE STAGE                                                                                                                   | PRODUCTION        | CONSTRUCTION                     | USE                       | END OF LIFE                      | RECOVERY     |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|---------------------------|----------------------------------|--------------|
| *Installation and deconstruction/demolition<br>are mostly manual. The sanitary fittings<br>should not need repair, maintenance or | A1 Raw Materials  | A4 Transportation/<br>Delivery   | B1 Use                    | C1 Deconstruction/<br>Demolition | D1 Recycling |
|                                                                                                                                   | A2 Transportation | A5 Construction/<br>Installation | B2 Maintenance            | C2 Transportation                | D2 Recovery  |
| replacement during the modeled life time.  Reuse and energy recovery are not                                                      | A3 Manufacturing  |                                  | B3 Repair                 | C3 Waste processing              | D3 Reuse     |
| modeled for sanitary fittings.                                                                                                    |                   |                                  | B4 Replacement            | C4 Disposal                      |              |
|                                                                                                                                   |                   |                                  | B5 Refurbishment          |                                  |              |
|                                                                                                                                   |                   |                                  | B6 Operational energy use |                                  |              |
|                                                                                                                                   |                   |                                  | B7 Operational water use  |                                  |              |
|                                                                                                                                   |                   |                                  |                           |                                  |              |

# **SM 2013** Learn about SM Single Score results

| Impacts per 10 years of service                                                   | 32.25 mPts                                                                                                                            | 0.06 mPts                                                                                 | 163.93 mPts                                                                                                                  | 0.06 mPts                                                                                                 | -2.89 mPts                                              |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Materials or processes contributing >20% to total impacts in each lifecycle stage | Brass and zinc parts together to the printed wiring board together with manufacturing processes such as polishing and electroplating. | Transportation of the product to installation site or consumer and disposal of packaging. | Volume of water use during the operation of the product and the embedded energy use (such as electricity) in the water used. | Transport to waste processing, waste processing and disposal of material flows transported to a landfill. | Plastic and metal<br>components'<br>recycling processes |

#### TRACI v2.1 A variation of 10 to 20% | A variation greater than 20%

| LIFECYCLE STAGE | PRODUCTION   |
|-----------------|--------------|
|                 | 111020011011 |

| Acidification SO₂eq  Ecotoxicity CTUe  Eutrophication N eq | <b>3</b> | 1.59E+00<br>4.82E+02 | 3.93E-03<br>1.59E+00 | 1.42E+01<br>1.31E+03 | 4.07E-03<br>6.14E-01 | -9.82E-02<br>-4.11E+01 |
|------------------------------------------------------------|----------|----------------------|----------------------|----------------------|----------------------|------------------------|
| ,                                                          |          |                      | 1.59E+00             | 1.31E+03             | 6.14E-01             | -4 11F+O1              |
| Eutrophication N eq                                        | ?        |                      |                      |                      |                      | - <del>-</del>         |
|                                                            |          | 9.47E-01             | 6.42E-04             | 1.20E+00             | 4.88E-04             | -3.00E-02              |
| Global warming CO <sub>2</sub> eq                          | ?        | 9.28E+01             | 9.01E-01             | 2.13E+03             | 5.13E-01             | -6.54E+00              |
| Ozone depletion CFC-11 e                                   | q ?      | 6.38E-06             | 1.14E-09             | 8.91E-05             | 6.23E-08             | -4.13E-07              |

CONSTRUCTION

#### Impact Category Unit CTU<sub>h</sub> Carcinogenics

| ( | Resources depletion |                         |   |          |          |          |          |           |  |
|---|---------------------|-------------------------|---|----------|----------|----------|----------|-----------|--|
|   | Smog                | kg O₃ eq                | ? | 1.08E+01 | 1.07E-01 | 9.84E+01 | 9.57E-02 | -1.19E+00 |  |
|   | Respiratory effects | kg PM <sub>2.5</sub> eq | ? | 2.05E-01 | 7.47E-05 | 9.43E-01 | 4.74E-04 | -1.20E-02 |  |
|   | Non-carcinogenics   | CTU <sub>h</sub>        | ? | 2.94E-04 | 8.31E-08 | 1.98E-04 | 2.77E-07 | -3.06E-05 |  |
|   | •                   |                         |   |          |          |          |          |           |  |

8.65E-09

# Impact Category

| impact Category       | Unit       |   |          |          |          |          |           |
|-----------------------|------------|---|----------|----------|----------|----------|-----------|
| Fossil fuel depletion | MJ surplus | ? | 5.26E+01 | 1.13E+00 | 1.43E+03 | 7.88E-01 | -5.29E+00 |
|                       |            |   |          |          |          |          |           |

## **LCA Background Report**

References

# August 2015

**SM Transparency Report Framework** Part A: LCA Calculation Rules and Background Report Requirements | Version 2015 (Based on EN15804+A1; in compliance with ISO 14040-44,

TOTO Sanitary Fittings Products LCA Background Report (public version),

2.66E-06

# 14025)

Part B: Product Group Definition – Commercial Flush Valves SM Transparency Reports enable purchasers and users to compare the environmental performance of products on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. SM Transparency

### Reports of products that comply with the same Product Group Definition (PGD) and include the same life cycle stages, but are made by different manufacturers, may not sufficiently align to support direct comparisons. They therefore, cannot be used as comparative assertions unless the conditions defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied.

# The intent is to reward project teams for selecting products from manufacturers

**Rating systems** 

4.47E-05

who have verified improved lifecycle environmental performance.

END OF LIFE

7.42E-09

**RECOVERY** 

### MR Building product disclosure and optimization Environmental product declarations

LEED BD+C: New Construction | v4 - LEED v4

**SM** Transparency Report product credit values: LCA self-declared, Report self-declared

# LCA verified, Report self-declared

| LCA verified, Report certified                                         | 1 product |
|------------------------------------------------------------------------|-----------|
| <b>Green Globes for New Construction and Sustainable Interiors</b>     |           |
| NC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell       |           |
| C 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs |           |

#### SM Transparency Report<sup>™</sup> **VERIFICATION LCA SCOPE** Report

| Certified          | <b>⊘</b> NSF |
|--------------------|--------------|
| Self-declared      |              |
|                    | LCA          |
| 3rd party verified | <b>⊘</b> NSE |
| Self-declared      |              |

Validity: 10/30/15 - 10/30/18

101 - 10/30/15 - 012

| Α |  |  |  |
|---|--|--|--|
|   |  |  |  |

| •  | Cradle to grave             |
|----|-----------------------------|
| )  | Cradle to gate with options |
| )  | Cradle to gate              |
| 16 | LC∆ and Report are          |

independently verified and certified to the SM Transparency Report Framework and ISO 14025.

P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA +1 734 769 8010

**NSF** International



1155 Southern Road Morrow, GA 30260

Contact us

**TOTO USA** 

0 product

1/4 product



## How we make it greener

**TET1LN & TET2LN** 

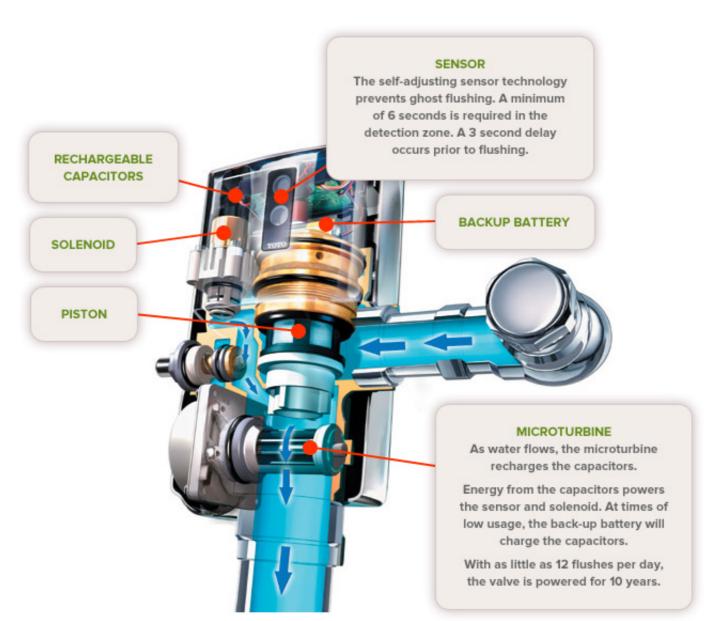
See LCA results by lifecycle stage

## **CONSTRUCTION**

Collapse all








TOTO participates in the UPS Carbon Neutral program. TOTO is a certified SmartWay partner.

### USE



TOTO's EcoPower® Toilet Flush Valves feature the highly regarded EcoPower technology. Engineered to reduce environmental impacts, TOTO's EcoPower products offer water and energy savings without sacrificing performance. Below are some of the features of TOTO's EcoPower technology.



## **SENSOR:**

Ensuring that water flows only when needed, the self-adjusting EcoPower sensor eliminates "ghost" flushing that wastes water. A minimum of six seconds in front of the sensor is required to get its acknowledgement, and a three second flush delay after stepping away from the sensing zone prevents excessive flushing.

## **MICROTURBINE:**

TOTO's EcoPower technology enables the product to operate 100% off grid. As water flows, the microturbine recharges capacitors for the sensor and solenoid. Less reliance on the back-up battery results in much less battery waste.

## **COURTESY FLUSH:**

A 24-hr courtesy flush maintains trap seal during periods of low use, preventing the need for unnecessary cleaning.

## **PISTON AND SOLENOID:**

The piston and solenoid mechanism, a marked improvement over traditional rubber diaphragm type valves, maintains consistent flush volume under a range of supply pressures.



WATER SAVINGS

Using the same proven engineering as our legendary EcoPower TET1GN, the TET1LN high-efficiency toilet flush valve reinforces TOTO's performance reputation while offering an additional water savings.



Metal and electronic parts can be recycled at the end of life.





Validity: 10/30/15 - 10/30/18 TOT - 10/30/15 - 012

## **LCA SCOPE**

Cradle to grave

Cradle to gate with options Cradle to gate

The LCA and Report are independently verified and certified to the SM Transparency Report Framework and ISO 14025.

#### **NSF** International P.O Box 130140 789 N.Dixboro Road Ann Arbor, MI 48105, USA www.nsf.org

+1 734 769 8010



#### **TOTO USA** 1155 Southern Road Morrow, GA 30260

Contact us